Pattern-avoiding permutation powers

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ordered partitions avoiding a permutation pattern of length 3

An ordered partition of [n] = {1, 2, . . . , n} is a partition whose blocks are endowed with a linear order. Let OPn,k be the set of ordered partitions of [n] with k blocks and OPn,k(σ) be the set of ordered partitions in OPn,k that avoid a pattern σ. For any permutation pattern σ of length three, Godbole, Goyt, Herdan and Pudwell obtained formulas for the number of ordered partitions of [n] wi...

متن کامل

Fixed points avoiding Abelian k-powers

We show that the problem of whether the fixed point of a morphism avoids Abelian k-powers is decidable under rather general conditions.

متن کامل

Avoiding fractional powers over the natural numbers

We study the lexicographically least infinite a/b-power-free word on the alphabet of non-negative integers. Frequently this word is a fixed point of a uniform morphism, or closely related to one. For example, the lexicographically least 7/4-power-free word is a fixed point of a 50847-uniform morphism. We identify the structure of the lexicographically least a/b-power-free word for three infinit...

متن کامل

On shortest crucial words avoiding abelian powers

Let k ≥ 2 be an integer. An abelian k-th power is a word of the form X1X2 · · ·Xk where Xi is a permutation of X1 for 2 ≤ i ≤ k. A word W is said to be crucial with respect abelian k-th powers if W avoids abelian k-th powers, but Wx ends with an abelian k-th power for any letter x occurring in W . Evdokimov and Kitaev [2] have shown that the shortest length of a crucial word on n letters avoidi...

متن کامل

On the length of the longest subsequence avoiding an arbitrary pattern in a random permutation

We consider the distribution of the length of the longest subsequence avoiding an arbitrary pattern, π, in a random permutation of length n. The well-studied case of a longest increasing subsequence corresponds to π = 21. We show that there is some constant cπ such that as n → ∞ the mean value of this length is asymptotic to 2 √ cπn and that the distribution of the length is tightly concentrate...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete Mathematics

سال: 2020

ISSN: 0012-365X

DOI: 10.1016/j.disc.2020.112017